Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
语言模型(LMS)已被证明在各种下游应用程序中很有用,例如摘要,翻译,问答和文本分类。由于它们可以存储的大量信息,LMS正在成为人工智能中越来越重要的工具。在这项工作中,我们提出了道具(提示为探测),该道具利用GPT-3(最初由OpenAI在2020年提出的大型语言模型)来执行知识基础构建任务(KBC)。 Prop实施了一种多步骤方法,该方法结合了各种提示技术来实现这一目标。我们的结果表明,手动提示策划是必不可少的,必须鼓励LM给出可变长度的答案集,特别是包括空的答案集,True/False问题是提高LM生成的建议精度的有用设备。 LM的大小是至关重要的因素,并且实体字典别名提高了LM评分。我们的评估研究表明,这些提出的技术可以大大提高最终预测的质量:Prop赢得了LM-KBC竞争的轨道2,表现优于基线36.4个百分点。我们的实施可在https://github.com/hemile/iswc-challenge上获得。
translated by 谷歌翻译
注释数据是用于培训和评估机器学习模型的自然语言处理中的重要成分。因此,注释具有高质量是非常理想的。但是,最近的工作表明,几个流行的数据集包含令人惊讶的注释错误或不一致之处。为了减轻此问题,多年来已经设计了许多注释错误检测方法。尽管研究人员表明他们的方法在新介绍的数据集上效果很好,但他们很少将其方法与以前的工作或同一数据集进行比较。这引起了人们对方法的一般表现的强烈关注,并且使他们的优势和劣势很难解决。因此,我们重新实现18种检测潜在注释错误的方法,并在9个英语数据集上对其进行评估,以进行文本分类以及令牌和跨度标签。此外,我们定义了统一的评估设置,包括注释错误检测任务,评估协议和一般最佳实践的新形式化。为了促进未来的研究和可重复性,我们将数据集和实施释放到易于使用和开源软件包中。
translated by 谷歌翻译